Moyal’s Characteristic Function, the Density Matrix and von Neumann’s Idempotent

نویسنده

  • B. J. Hiley
چکیده

In the Wigner-Moyal approach to quantum mechanics, we show that Moyal’s starting point, the characteristic function M(τ, θ) = ∫ ψ∗(x)ei(τp̂+θx̂)ψ(x)dx, is essentially the primitive idempotent used by von Neumann in his classic paper “Die Eindeutigkeit der Schrödingerschen Operatoren”. This paper provides the original proof of the Stone-von Neumann equation. Thus the mathematical structure Moyal develops is simply a re-expression of what is at the heart of quantum mechanics. This means it exactly reproduces the results of the quantum formalism. The “distribution function” F (X,P, t) is not a probability distribution. It is a quantum mechanical density matrix expressed in an (X,P )-representation, where X and P are the mean co-ordinates of a cell structure in phase space. The whole approach therefore clearly has little to do with classical statistical theories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully idempotent and coidempotent modules

In this paper, the notion of fully idempotent modules is defined and it is shown that this notion inherits most of the essential properties of the usual notion of von Neumann's regular rings. Furthermore, we introduce the dual notion of fully idempotent modules (that is, fully coidempotent modules) and investigate some properties of this class of modules.

متن کامل

On the nil-clean matrix over a UFD

 In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix  over a UFD is nil-clean.

متن کامل

Determination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial

Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...

متن کامل

Analysis of the role of von Neumann’s projection postulate in the canonical scheme of quantum teleportation and main quantum algorithms

Modern development of quantum technologies based on quantum information theory stimulated analysis of proposed computational, cryptographic and teleportational schemes from the viewpoint of quantum foundations. It is evident that not all mathematical calculations performed in complex Hilbert space can be directly realized in physical space. Recently by analyzing the original EPR paper we found ...

متن کامل

The Convex Analysis of Unitarily Invariant Matrix Functions

A fundamental result of von Neumann’s identifies unitarily invariant matrix norms as symmetric gauge functions of the singular values. Identifying the subdifferential of such a norm is important in matrix approximation algorithms, and in studying the geometry of the corresponding unit ball. We show how to reduce many convex-analytic questions of this kind to questions about the underlying gauge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006